

Exploratory Visual Analytics of a Dynamically Built

Network of Nodes in a WebGL-Enabled Browser

by Andrew M. Neiderer

ARL-MR-860 January 2014

Approved for public release; distribution is unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless

so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the

use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-MR-860 January 2014

Exploratory Visual Analytics of a Dynamically Built

Network of Nodes in a WebGL-Enabled Browser

Andrew M. Neiderer

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to
comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

January 2014

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

May 2013–November 2013
4. TITLE AND SUBTITLE

Exploratory Visual Analytics of a Dynamically Built Network of Nodes in a

WebGL-Enabled Browser

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Andrew M. Neiderer

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-CII-C

Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-MR-860

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes an extensible hypertext markup language (XHTML) document that dynamically builds a network of nodes

for a WebGL-enabled browser. It uses x3dom-full.js, a JavaScript library of functions that call WebGL functions for the low-

level manipulation of extensible three-dimensional (3-D) scene content that is embedded. One can update the XHTML tree data

structure defined by the browser for an immersive experience. In this report, exploratory visual analytics of a spatially-

distributed network of nodes in 3-D space is computed. The geometric branch of the scene graph is discussed and the code is

provided.

15. SUBJECT TERMS

dimensionality reduction, feature extraction, high-dimensional data, t-distributed stochastic neighbor embedding, neighbor

retrieval visualizer, visual analytics

16. SECURITY CLASSIFICATION OF:
17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

36

19a. NAME OF RESPONSIBLE PERSON

Andrew M. Neiderer
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-3203

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

1. Introduction 1

2. Scene Graph for a Network of Nodes 2

3. The Event Model for netVA 4

4. Future Work 5

Appendix A. An X3DOM Dynamic Build of a Network of Nodes 7

Appendix B. A WebGL d
2
 Network of Nodes 17

List of Symbols, Abbreviations, and Acronyms 31

Distribution List 32

 iv

List of Figures

Figure 1. The directed acyclic graph of X3D scene graph objects for the geometry branch of
a network node. There is such a description for each of the 26 nodes in the example.3

Figure 2. Web browser display of the 26-node network built using X3DOM, a JavaScript
library of functions for WebGL graphics...3

Figure B-1. A dynamically built 26-node network, where each node is dynamic. The network
was built using the WebGL API, which is procedure-based (JavaScript).19

 1

1. Introduction

The U.S. Army Research Laboratory (ARL) has developed an exploratory visual analytics

(EVA) application called netVA, which dynamically builds a network structure in Euclidean

space. Vertices (V) (or nodes) and edges (E) (or links) between them create a graph data

structure (G), a function of V and E: G = f(V,E) in two-dimensional (2-D) or three-dimensional

(3-D) space. An affine transformation of G followed by an orthographic projection onto an

arbitrary plane may reveal something informative about the spatial distribution of G that may

otherwise go unnoticed in a textual display. The visual analytics capability has been done in a

WebGL-enabled browser.

Gaming technology has been further strengthened by update of the hypertext markup language

(HTML), or extensible HTML (XHTML), <canvas>.,1 Drawing is done in a 3-D WebGL

rendering context defined for this 2-D rectangular array of pixels. The context provides object

representation and methods for drawing and manipulating graphics on the canvas. Work on the

definition of WebGL started in 2009. The specification WebGL 1.3 was released in March 2011,

and now many computer graphics programmers/gamers believe WebGL is here to stay.

WebGL-enabled rendering is supported natively by browsers such as the latest Mozilla Firefox,

Google Chrome, and Microsoft Internet Explorer 11. At the core of WebGL is OpenGL, which

has withstood repeated competitive threats to “emerge as the undisputed standard for

programming 3-D graphics.”2 An illustration of convergence and collaboration of various

working groups in the Web3D consortium, including WebGL and OpenGL, can be found at the

“What is X3D” link of http://www.web3d.org/realtime-3d/about. But 3-D drawing is not done

declaratively in WebGL, i.e., within the markup, but rather procedurally using the JavaScript

language from a HTML/XHTML <script>.

The WebGL application programming interface (API) is low level. Several libraries of

JavaScript functions exist to ease the use of WebGL. We chose the one called Three.js, written

by Ricardo Cabello Miguel,† which is widely used and intuitive for 3-D graphics programmers.

Still, not everyone is a computer programmer, and WebGL development is typically out of reach

for the casual web developer.

Technically, this is the fifth-generation HTML specification, or HTML5. But there is often confusion when using this term

(see page 8 of “Tracing the History of HTML5” in Jacob Seidelin’s book HTML5 Games). Here we simply use HTML to refer to

this latest version.
1Seidelin, J. HTML5 Games; John Wiley & Sons, Inc.: Hoboken, NJ, 2012.
2Parisi, T. WebGL Up and Running; O’Reilly Media, Inc.: North Sebastopol, CA, 2012.
†Three.js can be downloaded from https://githhub.com/mrdoob/three.js.

 2

The following XHTML application was done declaratively using the X3DOM API:

(1) embedded extensible 3-D (X3D) scene content and (2) document object model (DOM)

methods for building the scene graph (SG). The function getElementById() accesses the root of

the SG, an X3D <Group> node. Note that the distinction between procedural and declarative

programming, e.g., WebGL versus X3DOM, becomes “fuzzy” when using the <script> node.

X3D is an International Standards Organization specification (http://www.web3d.org/x3d

/specifications) for describing scene content. The SG is a directed acyclic graph of X3D nodes

arranged in a hierarchical parent-child relationship. X3D is component-based; that is, X3D nodes

are logically grouped to define a component, and components are arranged by profiles for a

specific domain. The profile used here is “Immersive” for an EVA capability.

In 2010, X3D nodes were coupled with HTML nodes for a tree description of a document in a

web browser. In our application, 2-D/3-D position vectors for nodes in the network are added

(appendChild()) to the root of the scene graph, which is accessed by getElementById(). The

result is EVA for a network of nodes.

2. Scene Graph for a Network of Nodes

The complete XHTML document for the following example, which builds a 26-node network, is

given in appendix A. It results from a load mutation event for the document buildNetwork

_X3DOM.xhtml. The property onload for the <body> tag is assigned buildNetwork(), a

JavaScript function that is called when the document initializes/changes.

After initializing for network node data, the DOM function getElementById() is used to access

the root of the scene; this is an X3D <Group> node. Then X3D nodes and node components are

created for each position vector the user gives and then added to the scene. A position vector is

defined as an X3D <Sphere>. This is all that is required to build the scene: just x, y, and z

components for a network node. The XHTML document builds the rest of the SG.

The geometry branch includes X3D nodes for each network node added to the SG in the

following order: an X3D <Transform>, <Shape>, <Sphere>, <Appearance>, and <Material>.

Also, a <TouchSensor> and <PlaneSensor> are defined and added to the SG for user

interactivity. The result is shown in figure 1. A mutator function, setAttribute(), is used in the

document to assign values to appropriate names. The resultant 26-node network is displayed in a

Mozilla Firefox browser in figure 2 (also see appendix B).

http://www.web3d.org/x3d/specifications
http://www.web3d.org/x3d/specifications

 3

Figure 1. The directed acyclic graph of X3D scene graph objects for the geometry branch of a

network node. There is such a description for each of the 26 nodes in the example.

Figure 2. Web browser display of the 26-node

network built using X3DOM, a JavaScript

library of functions for WebGL graphics.

G GG

X3D scene graph root

groupNode

T

Sw
switchTextNode

transformNode

TS

touchSensorNode

PS
planeSensorNode

Sc
scriptNode

appearanceNode

S

shapeNode

geometryNode

AppearanceSphere

Material

materialNode S
shapeTextNode

textNode

AppearanceText

Material

B
billboardTextNode

T
transformTextNode

appearanceTextNode

materialTextNode

FontStyle

fontStyleTextNode

Appearance

…

text branch

geometry branch

T

T
• • •

 4

A text branch for the SG could also be defined. We have done this in a console window of the

browser, but it was used only for debugging purposes.

Note that for those familiar with X3D, animation and user interactivity within the scene is done

using the <ROUTE> mechanism. An abstract connection between X3D nodes sending/receiving

events is assigned. But X3DOM uses the HTML event model (EM). This is the topic of the next

section.

3. The Event Model for netVA

The netVA application uses an EM for user interaction (and animation) with scene content. An

EM usually includes consideration of a (1) property, (2) event type, (3) event handler, and/or

(4) event listener. Currently we are using only the mutation event load, i.e., property onload for

the <body> tag in buildNetwork_X3DOM.xhtml. This property is assigned to the function

buildNetwork() that is in an internal <script> node of type “text/javascript”. In this function, the

network of nodes are created as X3D <Sphere>s, which are then attached to the SG for an

“Immersive” profile.

There are many other events that exist for both the keyboard and mouse. For example, mouse

events include click, dblclick, mousedown, mouseup, mouseover, mouseout, and mousemove.

An HTML tag with corresponding “on” property, e.g., onclick, would be assigned to an event

handler. There are also many keyboard events. A complete discussion of event modeling can be

found in a book by Andreas Anyuru.3

3Anyuru, A. Professional WebGL Programming, Developing 3-D Graphics for the Web; John Wiley & Sons, Inc.: Hoboken,

NJ, 2012.

 5

4. Future Work

The application buildNetwork_X3DOM.xhtml dynamically builds an X3D SG of a network by

only requiring position vectors for the nodes. It uses the DOM createElement() method for X3D

nodes of the SG, and sets attribute values when necessary (see appendix A).

With the recent addition of an <Extrusion> node in X3DOM (August 2013), dynamic links

between nodes will be added when appropriate. The links in netVA will also be done in

buildNetwork(), in a manner similar to the addition of position vectors.

Also, the mutation event for page reloads will be changed to a jQuery ready() method. This is

advertised to increase performance 1.5–7 times.

 6

INTENTIONALLY LEFT BLANK.

 7

Appendix A. An X3DOM Dynamic Build of a Network of Nodes

 8

The following extensible hypertext markup language (XHTML) example builds a 26-node

network. The code is thoroughly documented to assist in understanding. Only the JavaScript

var’s (1) npvs (number of position vectors) and (2) pv (position vector) need to be changed or

added for a different application. This example is for three-dimensional position vectors of

nodes; a two-dimensional situation is done by eliminating one of the components. JavaScript

variable names are camel-cased: begin with a lower-case letter with successive words

capitalized, and no spacing.

Fri Sep 13 08:41:22 2013 buildNetwork_X3DOM.xhtml Page 1

9

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xml:lang="en" lang="en">

 <head>

 <!-- FileName: buildNetwork_X3DOM.xhtml -->

 <!-- -->

 <!-- Description: X3DOM XHTML application to dynamically build a -->

 <!-- network of nodes - -->

 <!-- (1) X3D for scene content -->

 <!-- (2) HTML event model (EM) which uses DOM API to navigate -->

 <!-- and manipulate the document, including X3D nodes -->

 <!-- and attributes. -->

 <!-- -->

 <!-- By: Andrew M. Neiderer, US Army Research Laboratory. -->

 <!-- -->

 <!-- Date: 22 August 2013. -->

 <meta http-equiv="X-UA-Compatible"

 content="chrome=1"/>

 <meta http-equiv="Content-Type"

 content="text/html; charset=UTF-8"/>

 <!-- qTip tooltips -->

 div#qTip {

 padding: 3px;

 border: 1px solid #666;

 display: none;

 background: #999;

 color: #FFF;

 font: bold 9px Verdana, Arial, sans-serif;

 position: absolute;

 z-index: 1000;

 }

Fri Sep 13 08:41:22 2013 buildNetwork_X3DOM.xhtml Page 2

1
0

 <!-- X3DOM cascading style sheet -->

 <link rel="stylesheet" type="text/css"

 href="x3dom.css"/>

 <!-- JavaScript lib X3DOM by Dr.Ing Johannes Behr (Fraunhofer IGD) -->

 <script type="text/ecmascript"

 src="x3dom-full.js"/>

 <!-- JavaScript lib for tooltips (qrayg.com/learn/code/qtip) -->

 <script lang="JavaScript" type="text/javascript"

 src="qtip.js"/>

 <title>

 X3DOM dynamic build of a network of nodes

 </title>

 </head>

 <body onload="buildNetwork()">

 <h1>

 X3DOM dynamic build of a network of nodes

 </h1>

 <!-- X3D scene content -->

 <X3D id="X3D_ID"

 profile="Immersive"

 xmlns="http://www.web3d.org/specifications/x3d-namespace"

 showStat="false" showLog="false"

 x="0px" y="0px" width="600px" height="460px">

 <Scene>

 <Viewpoint description="dynamic build of a network"

 orientation="0.0 1.0 0.0 1.57"

 position="12.0 0.0 0.0"/>

 <NavigationInfo type='"EXAMINE" "ANY"'/>

 <Group id="sphereGroupID"/>;

Fri Sep 13 08:41:22 2013 buildNetwork_X3DOM.xhtml Page 3

1
1

 </Scene>

 </X3D>

 <!-- build network of nodes for X3D scene graph -->

 <script type="text/javascript">

 function handleClick(i)

 {

 alert('click event');

 }

 function buildNetwork()

 {

 // 3-component position vectors for network of nodes

 var npvs = 26;

 var ncmps = 3;

 var X = 0, Y = 1, Z = 2;

 var pv = new Array(npvs);

 for (var i = 0; i < npvs; i++)

 pv[i] = new Array(ncmps);

 pv[0][X] = -2.01240; pv[0][Y] = 1.71360; pv[0][Z] = 0.6;

 pv[1][X] = -2.71140; pv[1][Y] = 0.67860; pv[1][Z] = 0.7;

 pv[2][X] = -0.91680; pv[2][Y] = 1.85220; pv[2][Z] = 0.8;

 pv[3][X] = -2.36220; pv[3][Y] = -0.56100; pv[3][Z] = 0.9;

 pv[4][X] = -1.26480; pv[4][Y] = -1.01280; pv[4][Z] = 1.0;

 pv[5][X] = -0.22200; pv[5][Y] = -0.10740; pv[5][Z] = 1.1;

 pv[6][X] = -0.80580; pv[6][Y] = -0.79560; pv[6][Z] = 1.2;

 pv[7][X] = -1.63560; pv[7][Y] = -0.44460; pv[7][Z] = 1.1;

 pv[8][X] = -0.42720; pv[8][Y] = 1.03740; pv[8][Z] = 3.0;

 pv[9][X] = 0.13140; pv[9][Y] = 0.31920; pv[9][Z] = 2.9;

 pv[10][X] = 0.20040; pv[10][Y] = 1.65120; pv[10][Z] = 2.8;

 pv[11][X] = 1.29960; pv[11][Y] = -1.04640; pv[11][Z] = 2.7;

 pv[12][X] = 2.25300; pv[12][Y] = -1.08660; pv[12][Z] = 2.6;

 pv[13][X] = -0.01920; pv[13][Y] = 0.72840; pv[13][Z] = 2.6;

Fri Sep 13 08:41:22 2013 buildNetwork_X3DOM.xhtml Page 4

1
2

 pv[14][X] = -0.76680; pv[14][Y] = 0.13980; pv[14][Z] = 2.7;

 pv[15][X] = 2.71140; pv[15][Y] = 0.12660; pv[15][Z] = 2.8;

 pv[16][X] = 1.13700; pv[16][Y] = 0.04260; pv[16][Z] = 2.9;

 pv[17][X] = 0.78060; pv[17][Y] = 1.05240; pv[17][Z] = 3.0;

 pv[18][X] = 1.93860; pv[18][Y] = 0.95520; pv[18][Z] = 1.1;

 pv[19][X] = 0.43320; pv[19][Y] = -0.10620; pv[19][Z] = 1.2;

 pv[20][X] = 1.55640; pv[20][Y] = 0.44220; pv[20][Z] = 1.1;

 pv[21][X] = 2.07480; pv[21][Y] = -0.31260; pv[21][Z] = 1.0;

 pv[22][X] = -0.39420; pv[22][Y] = -1.71900; pv[22][Z] = 0.9;

 pv[23][X] = 0.63240; pv[23][Y] = -1.17960; pv[23][Z] = 0.8;

 pv[24][X] = 0.06060; pv[24][Y] = -0.67980; pv[24][Z] = 0.7;

 pv[25][X] = 1.48680; pv[25][Y] = -1.85220; pv[25][Z] = 0.6;

 // X3D scene graph description

 var group = document.getElementById("sphereGroupID");

 var transform;

 var touchSensor;

 var planeSensor;

 var shape;

 var geometry;

 var appearance;

 var material;

 // attributes for Transform node

 var TRANSFORM_translation;

 var translation;

 var TRANSFORM_SCALE = "0.15 0.15 0.15"

 var scale;

 // attribute for geometry node component,

 // which is a Sphere

 var SPHERE_RADIUS = 0.25;

 // attributes for Material node component

 // color from 0.0 to 1.0

 var MATERIAL_DIFFUSE_R = 1.0,

 MATERIAL_DIFFUSE_G = 0.0,

 MATERIAL_DIFFUSE_B = 0.0;

 var diffuse;

Fri Sep 13 08:41:22 2013 buildNetwork_X3DOM.xhtml Page 5

1
3

 // alpha from 0.0 to 1.0

 var MATERIAL_TRANSPARENCY = 0.3

 var transparency;

 // attribute for PlaneSensor node

 var PLANE_SENSOR_offset;

 var offset;

 var route;

 // add position vectors as X3D spheres to the scene graph

 for (var i = 0; i < npvs; i++) {

 // for Mozilla Ff Firebug console

 console.debug("node id=DEF=",i);

 // Transform node added to Group node

 transform = document.createElement("Transform");

 transform.setAttribute("id",i);

 translation = pv[i][X] + " " +

 pv[i][Y] + " " +

 pv[i][Z];

 transform.setAttribute("translation",translation);

 transform.setAttribute("scale",TRANSFORM_SCALE);

 group.appendChild(transform);

 // Shape node added to Transform node

 shape = document.createElement("Shape");

 shape.setAttribute("id",i);

 transform.appendChild(shape);

 // geometry node component added to Shape node

Fri Sep 13 08:41:22 2013 buildNetwork_X3DOM.xhtml Page 6

1
4

 geometry = document.createElement("Sphere");

 geometry.setAttribute("id",i);

 geometry.setAttribute("DEF",i);

 geometry.setAttribute("onclick",

 "handleClick(" +

 i +

 ");");

 shape.appendChild(geometry);

 // Appearance node component added to Shape node

 appearance = document.createElement("Appearance");

 appearance.setAttribute("id",i);

 shape.appendChild(appearance);

 // material node component added to Appearance node component

 material = document.createElement("Material");

 material.setAttribute("id",i);

 if (i == 0)

 diffuse = MATERIAL_DIFFUSE_R + " " +

 MATERIAL_DIFFUSE_G + " " +

 MATERIAL_DIFFUSE_B;

 else if (i > 0 && i < 8)

 diffuse = 0.0 + " " +

 0.0 + " " +

 0.9;

 else if (i > 8 && i < 21)

 diffuse = 1.0 + " " +

 1.0 + " " +

 1.0;

Fri Sep 13 08:41:22 2013 buildNetwork_X3DOM.xhtml Page 7

1
5

 else

 diffuse = 1.0 + " " +

 0.6 + " " +

 0.0;

 material.setAttribute("diffuseColor",diffuse);

 material.setAttribute("transparency",MATERIAL_TRANSPARENCY);

 appearance.appendChild(material);

 // TouchSensor node

 touchSensor = document.createElement("TouchSensor");

 touchSensor.setAttribute("id",i);

 touchSensor.addEventListener("touchTime",function ()

 {

 alert("clicked " + i);

 },

 false);

 transform.appendChild(touchSensor);

 // PlaneSensor node is necessary for animation, and

 // added to Transform node.

 planeSensor = document.createElement("PlaneSensor");

 planeSensor.setAttribute("id",i);

 offset = pv[i][X] + " " +

 pv[i][Y] + " " +

 pv[i][Z];

 planeSensor.setAttribute("offset",offset);

 transform.appendChild(planeSensor);

 // animation from PlaneSensor node to Transform node

Fri Sep 13 08:41:22 2013 buildNetwork_X3DOM.xhtml Page 8

1
6

 route = document.createElement("ROUTE");

 route.setAttribute("fromNode","PLANE_SENSOR");

// route.setAttribute("fromField",translation_changed);

 route.setAttribute("toNode","TRANSFORM");

// route.setAttribute("toField",translation);

 }

 }

 document.onload = function()

 {

 alert("tooltips here?");

 }

 </script>

 </body>

</html>

17

Appendix B. A WebGL d
2
 Network of Nodes

18

The following extensible hypertext markup language (XHTML) application, called inetVA,

dynamically builds a network of dynamic nodes procedurally using the WebGL application

programming interface (API). This in contrast to appendix A, where the network was built

declaratively using X3DOM (document object model) libraries. Position vectors of nodes in the

network are assigned values in the JavaScript function buildNetwork() as before. But now the

user is responsible for providing much more, as can be seen in buildInteractiveNetwork

_WebGL.xhtml. Display of output in a Mozilla Firefox browser is also included (see figure B-1).

Currently we are using X3DOM libraries for adding dynamic nodes and links to the network.

This should be easier now that an X3D extrusion node has been implemented.

1
9

Figure B-1. A dynamically built 26-node network, where each node is dynamic. The network was built using the WebGL API, which is

procedure-based (JavaScript).

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 1

2
0

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

 "http://www.w3.org/TR/xhtml11/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"

 xml:lang="en" lang="en">

 <head>

 <!-- Description: WebGL XHTML application for dynamically building a -->

 <!-- dynamic network of nodes using JavaScript lib calls -->

 <!-- to WebGL, which calls OpenGL to control graphics -->

 <!-- processor unit. -->

 <!-- -->

 <!-- By: Andrew M. Neiderer, US ARL. -->

 <!-- -->

 <!-- Reference: Ricardo Cabello Miguel (aka Mr.doob) -->

 -->

 <!-- WebGL interactive draggable cubes. -->

 <!-- -->

 <!-- Date: 27 January 2013. -->

 <meta charset="utf-8"/>

 <meta name="viewport"

 content="width=device-width, user-scalable=no,

 minimum-scale=1.0, maximum-scale=1.0"/>

 <!-- WebGL cascading style sheet -->

 <link rel="stylesheet" type="text/css"

 href="webglbook.css"/>

 <style>

 body {

 font-family: Monospace;

 background-color: #f0f0f0;

 margin: 0px;

 overflow: hidden;

 }

 </style>

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 2

2
1

 <!-- minimal JavaScript libs by Mr.doob; original libs by -->

 <!-- Tony Parisi, WebGL Up and Running. -->

 <script src="three.min.js"/>

 <script src="TrackballControls.js"/>

 <script src="stats.min.js"/>

 <title>

 WebGL dynamic build of a dynamic network of nodes

 </title>

 </head>

 <body>

 <script>

 // 3-component position vectors for network of nodes

 var npvs = 26;

 var ncmps = 3;

 var X = 0, Y = 1, Z = 2;

 var pv = new Array(npvs);

 for (var i = 0; i < npvs; i++)

 pv[i] = new Array(ncmps);

 buildNetwork(pv,npvs);

 // for debugging in Mozilla Ff,

 // Tools->Web Developer->Web Console

 console.debug(" ");

 console.debug("main()");

 console.debug(" ");

 for (var i = 0; i < npvs; i++)

 console.debug("node " + i + " [x,y,z] = [" +

 pv[i][X] + "," +

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 3

2
2

 pv[i][Y] + "," +

 pv[i][Z] + "]");

 // 3D position vectors for location of geometry nodes in network

 function buildNetwork(pv,npvs)

 {

 var X = 0, Y = 1, Z = 2;

 // for debugging

 console.debug(" ");

 console.debug("buildNetwork()");

 console.debug(" ");

 pv[0][X] = -2.01240; pv[0][Y] = 1.71360; pv[0][Z] = 0.6;

 pv[1][X] = -2.71140; pv[1][Y] = 0.67860; pv[1][Z] = 0.7;

 pv[2][X] = -0.91680; pv[2][Y] = 1.85220; pv[2][Z] = 0.8;

 pv[3][X] = -2.36220; pv[3][Y] = -0.56100; pv[3][Z] = 0.9;

 pv[4][X] = -1.26480; pv[4][Y] = -1.01280; pv[4][Z] = 1.0;

 pv[5][X] = -0.22200; pv[5][Y] = -0.10740; pv[5][Z] = 1.1;

 pv[6][X] = -0.80580; pv[6][Y] = -0.79560; pv[6][Z] = 1.2;

 pv[7][X] = -1.63560; pv[7][Y] = -0.44460; pv[7][Z] = 1.1;

 pv[8][X] = -0.42720; pv[8][Y] = 1.03740; pv[8][Z] = 3.0;

 pv[9][X] = 0.13140; pv[9][Y] = 0.31920; pv[9][Z] = 2.9;

 pv[10][X] = 0.20040; pv[10][Y] = 1.65120; pv[10][Z] = 2.8;

 pv[11][X] = 1.29960; pv[11][Y] = -1.04640; pv[11][Z] = 2.7;

 pv[12][X] = 2.25300; pv[12][Y] = -1.08660; pv[12][Z] = 2.6;

 pv[13][X] = -0.01920; pv[13][Y] = 0.72840; pv[13][Z] = 2.6;

 pv[14][X] = -0.76680; pv[14][Y] = 0.13980; pv[14][Z] = 2.7;

 pv[15][X] = 2.71140; pv[15][Y] = 0.12660; pv[15][Z] = 2.8;

 pv[16][X] = 1.13700; pv[16][Y] = 0.04260; pv[16][Z] = 2.9;

 pv[17][X] = 0.78060; pv[17][Y] = 1.05240; pv[17][Z] = 3.0;

 pv[18][X] = 1.93860; pv[18][Y] = 0.95520; pv[18][Z] = 1.1;

 pv[19][X] = 0.43320; pv[19][Y] = -0.10620; pv[19][Z] = 1.2;

 pv[20][X] = 1.55640; pv[20][Y] = 0.44220; pv[20][Z] = 1.1;

 pv[21][X] = 2.07480; pv[21][Y] = -0.31260; pv[21][Z] = 1.0;

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 4

2
3

 pv[22][X] = -0.39420; pv[22][Y] = -1.71900; pv[22][Z] = 0.9;

 pv[23][X] = 0.63240; pv[23][Y] = -1.17960; pv[23][Z] = 0.8;

 pv[24][X] = 0.06060; pv[24][Y] = -0.67980; pv[24][Z] = 0.7;

 pv[25][X] = 1.48680; pv[25][Y] = -1.85220; pv[25][Z] = 0.6;

 }

 // geometry branch of scene graph for network of nodes

 var container;

 var scene;

 var renderer;

 var camera;

 var projector;

 var light;

 var geometry;

 var object, objects = [];

 var plane;

 var controls;

 var stats;

 var INTERSECTED;

 var SELECTED;

 var mouse = new THREE.Vector2();

 var offset = new THREE.Vector3();

 geometryBranchNetwork(pv,npvs);

 animate();

 // use JavaScript lib calls to WebGL to build

 // geometry branch of scene graph for network of nodes

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 5

2
4

 function geometryBranchNetwork(pv,npvs)

 {

 var X = 0, Y = 1, Z = 2;

 // for debugging

 console.debug(" ");

 console.debug("geometryBranchNetwork()");

 console.debug(" ");

 for (var i = 0; i < npvs; i++)

 console.debug("node " + i + " [x,y,z] = [" +

 pv[i][X] + "," +

 pv[i][Y] + "," +

 pv[i][Z] + "]");

 container = document.createElement('div');

 document.body.appendChild(container);

 camera = new THREE.PerspectiveCamera(70.0,

 window.innerWidth / window.innerHeight,

 1.0,10000.0);

 camera.position.z = 1000.0;

 controls = new THREE.TrackballControls(camera);

 controls.rotateSpeed = 1.0;

 controls.zoomSpeed = 1.2;

 controls.panSpeed = 0.8;

 controls.noZoom = false;

 controls.noPan = false;

 controls.staticMoving = true;

 controls.dynamicDampingFactor = 0.3;

 scene = new THREE.Scene();

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 6

2
5

 scene.add(new THREE.AmbientLight(0x505050));

 light = new THREE.SpotLight(0xffffff,1.5);

 light.position.set(0.0,500.0,2000.0);

 light.castShadow = true;

 light.shadowCameraNear = 200.0;

 light.shadowCameraFar = camera.far;

 light.shadowCameraFov = 50.0;

 light.shadowBias = -0.00022;

 light.shadowDarkness = 0.5;

 light.shadowMapWidth = 2048.0;

 light.shadowMapHeight = 2048.0;

 scene.add(light);

 geometry = new THREE.SphereGeometry(0.5);

 for (var i = 0; i < npvs; i ++) {

 var object = new THREE.Mesh(geometry,

 new THREE.MeshLambertMaterial(

 {color: 0xff0000}));

 object.material.ambient = object.material.color;

 object.position.x = pv[i][X] * 10.0 + 100.0;

 object.position.y = pv[i][Y] * 1.0 + 100.0;

 object.position.z = pv[i][Z] * 10.0 + 600.0;

 console.debug(" object.position.x = " + object.position.x +

 " object.position.y = " + object.position.y +

 " object.position.z = " + object.position.z);

 scene.add(object);

 objects.push(object);

 }

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 7

2
6

 plane = new THREE.Mesh(new THREE.PlaneGeometry(2000.0,2000.0,8.0,8.0),

 new THREE.MeshBasicMaterial({color: 0x000000,opacity: 0.25,

 transparent: true,wireframe: true}));

 plane.visible = false;

 scene.add(plane);

 projector = new THREE.Projector();

 renderer = new THREE.WebGLRenderer({antialias: true});

 renderer.sortObjects = false;

 renderer.setSize(window.innerWidth,window.innerHeight);

 renderer.shadowMapEnabled = true;

 renderer.shadowMapSoft = true;

 container.appendChild(renderer.domElement);

 var info = document.createElement('div');

 info.style.position = 'absolute';

 info.style.top = '10px';

 info.style.width = '100%';

 info.style.textAlign = 'center';

 info.innerHTML = 'three.js WebGL d^2

network';

 container.appendChild(info);

 stats = new Stats();

 stats.domElement.style.position = 'absolute';

 stats.domElement.style.top = '0px';

 container.appendChild(stats.domElement);

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 8

2
7

 renderer.domElement.addEventListener('mousemove',onDocumentMouseMove,false);

 renderer.domElement.addEventListener('mousedown',onDocumentMouseDown,false);

 renderer.domElement.addEventListener('mouseup',onDocumentMouseUp,false);

 window.addEventListener('resize',onWindowResize,false);

 }

 // resize event

 function onWindowResize()

 {

 camera.aspect = window.innerWidth / window.innerHeight;

 camera.updateProjectionMatrix();

 renderer.setSize(window.innerWidth,window.innerHeight);

 }

 // mousemove event

 function onDocumentMouseMove(event)

 {

 event.preventDefault();

 mouse.x = (event.clientX / window.innerWidth) * 2 - 1;

 mouse.y = -(event.clientY / window.innerHeight) * 2 + 1;

 var vector = new THREE.Vector3(mouse.x,mouse.y,0.5);

 projector.unprojectVector(vector,camera);

 var ray = new THREE.Ray(camera.position,

 vector.subSelf(camera.position).normalize());

 if (SELECTED) {

 var intersects = ray.intersectObject(plane);

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 9

2
8

 SELECTED.position.copy(intersects[0].point.subSelf(offset));

 return;

 }

 var intersects = ray.intersectObjects(objects);

 if (intersects.length > 0) {

 if (INTERSECTED != intersects[0].object) {

 if (INTERSECTED)

 INTERSECTED.material.color.setHex(INTERSECTED.currentHex);

 INTERSECTED = intersects[0].object;

 INTERSECTED.currentHex = INTERSECTED.material.color.getHex();

 plane.position.copy(INTERSECTED.position);

 plane.lookAt(camera.position);

 }

 container.style.cursor = 'pointer';

 }

 else {

 if (INTERSECTED)

 INTERSECTED.material.color.setHex(INTERSECTED.currentHex);

 INTERSECTED = null;

 container.style.cursor = 'auto';

 }

 }

 // mousedown event

 function onDocumentMouseDown(event)

 {

 event.preventDefault();

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 10

2
9

 var vector = new THREE.Vector3(mouse.x,mouse.y,0.5);

 projector.unprojectVector(vector,camera);

 var ray = new THREE.Ray(camera.position,

 vector.subSelf(camera.position).normalize());

 var intersects = ray.intersectObjects(objects);

 if (intersects.length > 0) {

 controls.enabled = false;

 SELECTED = intersects[0].object;

 var intersects = ray.intersectObject(plane);

 offset.copy(intersects[0].point).subSelf(plane.position);

 container.style.cursor = 'move';

 }

 }

 // mouseup event

 function onDocumentMouseUp(event)

 {

 event.preventDefault();

 controls.enabled = true;

 if (INTERSECTED) {

 plane.position.copy(INTERSECTED.position);

 SELECTED = null;

 }

 container.style.cursor = 'auto';

Fri Sep 13 08:42:26 2013 buildInteractiveNetwork_WebGL.xhtml Page 11

3
0

 }

 // (see p. 28 of WebGL Up and Running by Tony Parisi, and/or

 // p. 222 of WebGL Programming by Andreas Anyuru)

 function animate() {

 // ask for another frame before you start doing the current frame

 requestAnimationFrame(animate);

 render();

 stats.update();

 }

 // render the scene

 function render()

 {

 controls.update();

 renderer.render(scene,camera);

 }

 </script>

 </body>

</html>

31

List of Symbols, Abbreviations, and Acronyms

2-D two-dimensional space

3-D three-dimensional space

API application programming interface

ARL U.S. Army Research Laboratory

DOM document object model

E edge (or link)

EM event model

EVA exploratory visual analytics

HTML hypertext markup language

IE Microsoft Internet Explorer

npvs number of position vectors

PV position vector

SG scene graph

V vertex (or node)

VA visual analytics

X3D extensible 3-D Graphics specification

XHTML extensible hypertext markup language

NO. OF
COPIES ORGANIZATION

32

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 1 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 IMAL HRA

 1 DIRECTOR
 (PDF) US ARMY RESEARCH LAB
 RDRL CIO LL

ABERDEEN PROVING GROUND

 1 DIR USARL
 (PDF) RDRL CII C
 A NEIDERER

